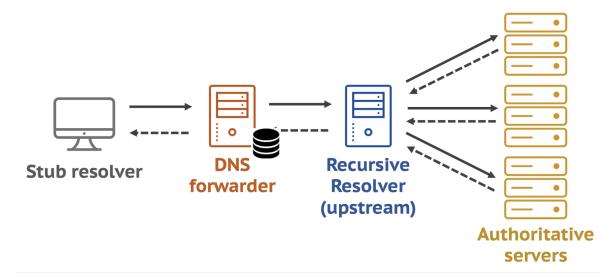
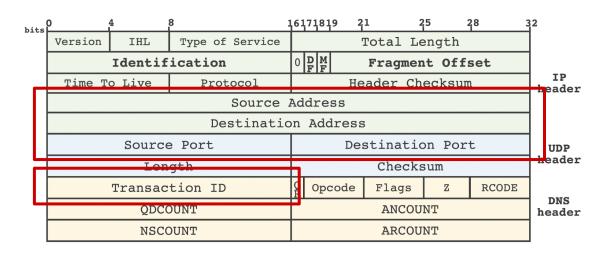
Poison Over Troubled Forwarders:

A Cache Poisoning Attack Targeting DNS Forwarding Devices

Xiaofeng Zheng, Chaoyi Lu, Jian Peng, Qiushi Yang, Dongjie Zhou, Baojun Liu, Keyu Man, Shuang Hao, Haixin Duan and Zhiyun Qian




DNS Forwarder

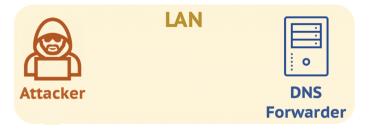
- Devices standing in between stub and recursive resolvers
 - E.g., home routers, open Wi-Fi networks
 - Can have caching abilities
 - Relies on the integrity of upstream resolvers

DNS Cache Poisoning Attacks

- Forging attacks targeting recursive resolvers
 - Craft a DNS answer which matches the query's metadata
 - Example: Kaminsky Attack (2008)
 - Mitigation: increase randomness of DNS packet

RFC 5452:

DNS resolver implementations should use **randomized** ephemeral port numbers and DNS transaction IDs


Threat Model: Overview

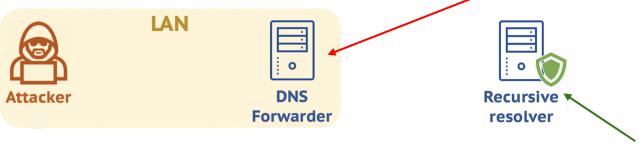
- Defragmentation attacks targeting DNS forwarders
 - Reliably forces DNS response fragmentation
 - Targets arbitrary victim domain names

Threat Model: Overview

- Defragmentation attacks targeting DNS forwarders
 - Reliably forces DNS response fragmentation
 - Targets arbitrary victim domain names

1. Attacker & DNS forwarder locate in the same LAN (e.g., in open Wi-Fi networks)

2. Use attacker's own domain name and authoritative server


Insight on Forwarder Roles

- Defragmentation attacks targeting DNS forwarders
 - Reliably forces DNS response fragmentation
 - Targets arbitrary victim domain names

1. Attacker & DNS forwarder locate in the same LAN (e.g., in open Wi-Fi networks)

Relies on recursive resolvers
Target of cache poisoning

2. Use attacker's own domain name and authoritative server

Security checks (e.g., DNSSEC)

Attacker's Oversized DNS Response

CNAME chain

Use dummy CNAME records to enlarge attacker's DNS response

a.attacker.com CNAME b.attacker.com b.attacker.com CNAME c.attacker.com c.attacker.com CNAME d.attacker.com ... x.attacker.com CNAME y.attacker.com y.attacker.com CNAME z.attacker.com z.attacker.com A x.x.x.x

2nd fragment

> 1,500 Bytes (Ethernet MTU)
Always produce fragments

Attacker's Oversized DNS Response

CNAME chain

What the

recursive

resolver

sees

- Use dummy CNAME records to enlarge attacker's DNS response
- Use CNAME to point attacker's domain to any victim

a.attacker.com CNAME b.attacker.com
b.attacker.com CNAME c.attacker.com
c.attacker.com CNAME d.attacker.com
...
x.attacker.com CNAME y.attacker.com

1st fragment

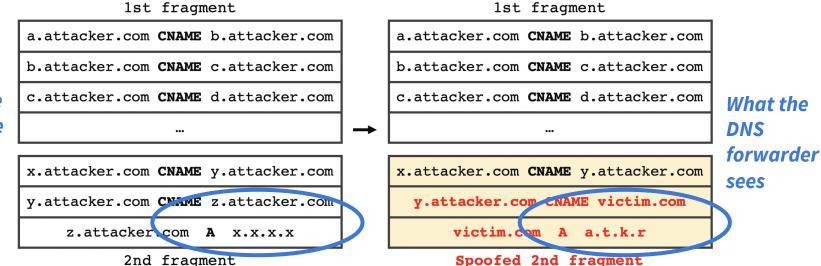
a.attacker.com CNAME b.attacker.com
b.attacker.com CNAME c.attacker.com
c.attacker.com CNAME d.attacker.com
...

x.attacker.com CNAME y.attacker.com
y.attacker.com CNAME victim.com
victim.com A a.t.k.r

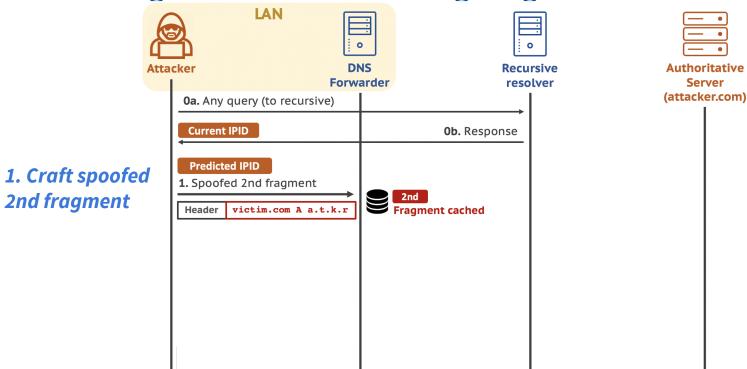
What the DNS forwarder sees

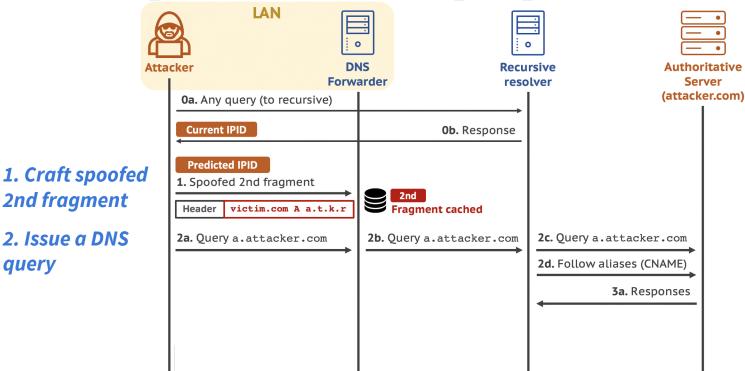
2nd fragment

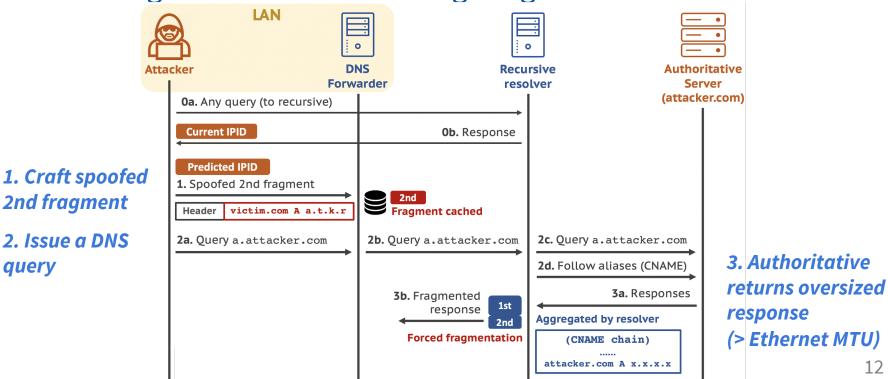
y.attacker.com CNAME z.attacker.com


z.attacker.com A x.x.x.x

Spoofed 2nd fragment

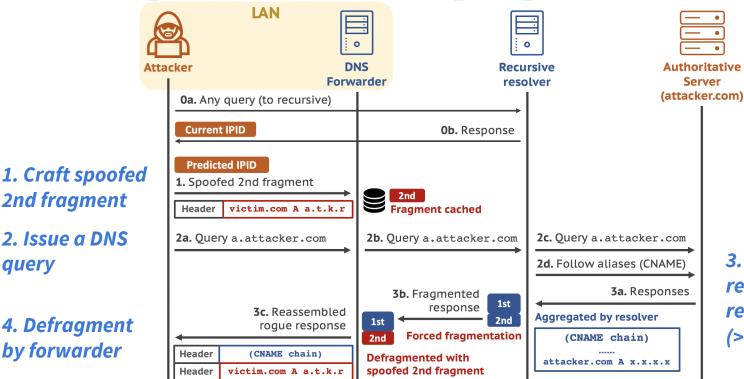

Attacker's Oversized DNS Response


CNAME chain


- Use dummy CNAME records to enlarge attacker's DNS response
- Use CNAME to point attacker's domain to any victim

What the recursive resolver sees

2nd fragment


2. Issue a DNS

4. Defragment

by forwarder

query

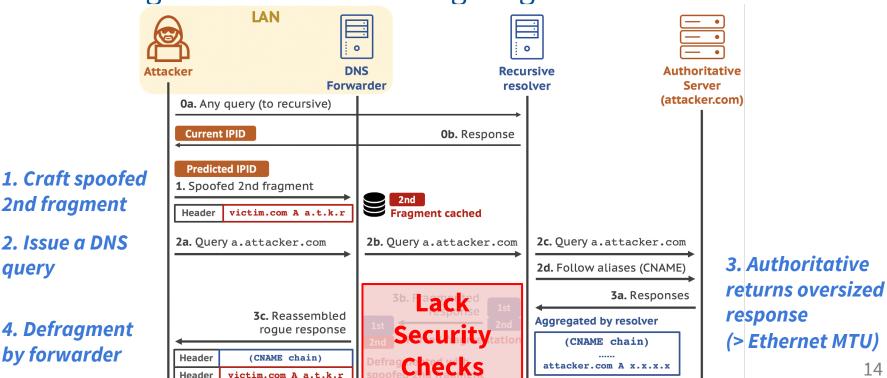
Defragmentation attacks targeting DNS forwarders

3. Authoritative

response

returns oversized

(> Ethernet MTU)


2nd fragment

2. Issue a DNS

4. Defragment

by forwarder

query

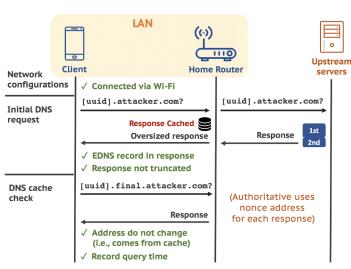
Conditions of Successful Attacks

- DNS caching by record
 - The tampered record can be cached separately
- EDNS(0) support
 - Allows transfer of DNS messages larger than 512 Bytes
- No active truncation of DNS response
 - Ensures that the entire oversized response is transfered
- No response verification
 - DNS forwarders rely on upstream resolvers

Vulnerable DNS Software

- Home routers
 - 16 models are tested (by real attacks in controlled environment)
 - 8 models are vulnerable
- DNS software
 - 2 kinds of popular DNS software are vulnerable

Brand	Model	EDNS(0)	No Tru- ncation	Cache by Record	Vulnerable
D-Link	DIR 878	✓	✓	✓	✓
ASUS	RT-AC66U B1	/	✓	✓	✓
Linksys	WRT32X	/	✓	✓	✓
Motorola	M2	1	✓	✓	✓
Xiaomi	3G	1	✓	✓	✓
GEE	Gee 4 Turbo	1	✓	✓	✓
Wavlink	A42	1	✓	✓	✓
Volans	VE984GW+	✓	✓	✓	✓


Software	Version	EDNS(0) & No truncation	Cache by Record	No Veri- fication	Vulnerable
dnsmasq	2.7.9	√	√	√	✓
MS DNS	2019	✓	✓	✓	✓

Vulnerable DNS Software

- Home routers
 - 16 models are tested (by real attacks in controlled environment)
 - 8 models are vulnerable
- DNS software
 - 2 kinds of popular DNS software are vulnerable
- Responsible Disclosure
 - ASUS and D-Link release firmware patches
 - Linksys accepts issue via BugCrowd

Measuring Clients Potentially Under Risk

- Collect vantage points
 - Implement measurement code in a network diagnosis tool
 - 20K clients, mostly located in China
- Check the forwarder conditions
 - Ethical considerations: no real attack
 - 40% do not support EDNS(0) yet
 - Estimated vulnerable clients: 6.6%

Discussion

- Mitigation for DNS forwarders
 - Perform response verification (e.g., DNSSEC)
 - DNS caching by response (short-term solution)
- Lack clear guidelines of DNS forwarders
 - What role should they play?
 - What features should be supported?

- An attack targeting DNS forwarders
- Affects forwarder implementations extensively
- Call for more attention on DNS forwarder security

Any Questions?

zxf19@mails.tsinghua.edu.cn