
CDN Backfired: Amplification Attacks Based on
HTTP Range Requests

Weizhong Li∗, Kaiwen Shen∗, Run Guo∗, Baojun Liu∗, Jia Zhang∗¶�,
Haixin Duan∗‖�, Shuang Hao†, Xiarun Chen‡, Yao Wang§

∗ Tsinghua University,

{lwz17, skw17, gr15, lbj15}@mails.tsinghua.edu.cn, zhangjia@cernet.edu.cn, duanhx@tsinghua.edu.cn
† University of Texas at Dallas, shao@utdallas.edu

‡ Peking University, xiar c@pku.edu.cn
§ Beijing Information Science & Technology University, lemonvegetablefish@gmail.com

¶ Beijing National Research Center for Information Science and Technology
‖ Research Institute of Qi-AnXin Group

Abstract—Content Delivery Networks (CDNs) aim to improve
network performance and protect against web attack traffic for
their hosting websites. And the HTTP range request mechanism
is majorly designed to reduce unnecessary network transmission.
However, we find the specifications failed to consider the security
risks introduced when CDNs meet range requests.

In this study, we present a novel class of HTTP amplifi-
cation attack, Range-based Amplification (RangeAmp) Attacks.
It allows attackers to massively exhaust not only the outgoing
bandwidth of the origin servers deployed behind CDNs but
also the bandwidth of CDN surrogate nodes. We examined the
RangeAmp attacks on 13 popular CDNs to evaluate the feasibility
and real-world impacts. Our experiment results show that all
these CDNs are affected by the RangeAmp attacks. We also
disclosed all security issues to affected CDN vendors and already
received positive feedback from all vendors.

Index Terms—CDN Security, HTTP Range Request, Amplifi-
cation Attack, DDoS

I. INTRODUCTION

Content Delivery Networks (CDNs) redirect web requests

from client users to geographically distributed surrogate

servers and are regarded as an important part of the Internet

infrastructure. CDN vendors significantly improve the perfor-

mance and scalability of their hosting websites by delivering

their web resources globally. In addition, CDNs are also

famous for their sophisticated protection mechanisms against

web attacks, including normalizing or filtering the intrusions

traffic, offloading DDoS traffic to global surrogate nodes. As

a result, CDN vendors are widely trusted by the most popular

websites all over the world. For example, Akamai, the leading

CDN service provider, is responsible for serving between 15%

and 30% of all web traffic according to a public report [1].

At the same time, the HTTP protocol also goes further. The

HTTP range request mechanism is designed to allow a client to

request just a part of a web resource [2]. Therefore, the client

can not only retrieve partial content of large representations

but also efficiently recover from partially failed transfers.

Currently, despite the fact that this mechanism is only an

optional feature of HTTP, the RFC specifications still suggest

� Corresponding author.

that web servers and intermediate cache servers should support

it. And in the real world, range requests have been strongly

supported by CDN vendors and widely applied in multi-thread

file downloading and resuming from break-point.

Unfortunately, while the RFC specifications are generally

clear on how to parse and interpret range requests, we find

the implementations of CDN vendors problematic. In this

study, we present two types of “Range-based Amplification

(RangeAmp) Attacks”, which allow attackers to exploit the

Range implementation vulnerabilities and damage DDoS

protection mechanisms of CDNs. Specifically, the RangeAmp

attacks include Small Byte Range (SBR) Attack and Over-

lapping Byte Range (OBR) Attack. The SBR attack, which

leverages the aggressive prefetch strategy of CDN platforms,

enables attackers to massively consume network bandwidth

of the origin servers hosted on CDNs by performing some

crafted HTTP range requests, see section IV-B. Worse, by

exploiting the implementation flaws on multi-range requests

and by connecting the vulnerable CDNs, the OBR attack even

allows attackers to directly damage the performance of CDN

nodes by building up a huge number of multi-part responses

between specific CDN nodes, see section IV-C. Therefore, the

RangeAmp attacks can bring significantly detrimental impacts

on both CDN hosting servers and CDN surrogate nodes.

In this study, we also evaluate the RangeAmp attacks in

the wild by conducting a series of controlled experiments

on 13 popular CDN vendors. Our experiment results show

that all examined CDN vendors are seriously affected by the

RangeAmp attacks, with 13 CDNs vulnerable to the SBR

attack and 11 combinations of cascaded CDNs vulnerable to

the OBR attack. For instance, using Akamai or G-Core Labs to

perform an SBR attack, an attacker is able to compel the origin

website to generate response traffic 43000 times larger than

the one received by the attacker. Besides, when connecting

Cloudflare and Akamai to launch an OBR attack and selecting

a 1KB file as the target resource, an attacker is able to

force specific nodes of these two CDNs to transfer traffic

over 12MB with just one multi-range request. Therefore, the

RangeAmp attacks introduce serious security threats against

14

2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00022

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

the availability of CDN infrastructure.

At last, we propose mitigation solutions and recommenda-

tions to different roles, including the origin website administra-

tors, the CDN vendors, and the HTTP protocol specifications.

We also responsibly disclosed all found vulnerabilities to

affected CDN vendors. Until the paper was finalized, we

received some positive feedback from all vendors, some of

which have fixed RangeAmp vulnerabilities.

Overall, our study makes the following contributions.

• We present a novel class of HTTP amplification attack,

Range-based Amplification (RangeAmp) Attacks. The

RangeAmp attacks can be used to consume the outgoing

bandwidth of victims, which not only downgrades the

network availability but also brings economic losses.

• We examine the RangeAmp attacks on 13 popular CDN

vendors and evaluate the feasibility and severity of

RangeAmp vulnerabilities. We find all examined CDNs

are vulnerable to the RangeAmp attacks, and the ampli-

fication factor is up to 43000 times in some cases.

• We also responsibly disclosed all security issues to af-

fected CDN vendors. Further, we analyze the root cause

of RangeAmp vulnerabilities and propose countermea-

sures and mitigation solutions.

We organize the rest of this paper as follows. Section II pro-

vides the background of CDN and HTTP range request mech-

anism. Section III shows the range-specific implementations

in CDNs. Section IV describes the details of the RangeAmp

attacks. We evaluate the feasibility of the RangeAmp attacks

and explore the amplification factors in Section V. We discuss

mitigation solutions and our responsible disclosure in Sec-

tion VI and Section VII. Section VIII elaborates on the related

works, including HTTP Range security, CDN security, and

amplification attacks. And section IX concludes this paper.

II. BACKGROUND

A. CDN Overview

CDN network is made up of server clusters geo-located

globally. CDNs have evolved to become an important part

of the Internet infrastructure. It not only improves the per-

formance for its customer websites but also provides security

features such as DDoS protection mechanisms.

CDN network can be divided into two parts: central and

edge nodes. Central nodes are used for global load balancing

and content management. Edge nodes are used for content

distribution and caching and classified as ingress nodes and

egress nodes according to their positions and functions. In

general, ingress nodes are close to the user and responsible

for user access and content distribution, while egress nodes

are close to the origin website and retrieve contents from it.

As it is shown in Fig 1, in a CDN environment, there are

multiple segments of connectivity in the network path between

the client and the origin server, including one between the

client and the CDN (recognized as client-cdn), one between

the CDN and the origin server (recognized as cdn-origin), and

one(s) within the CDN or between CDNs.

Client OriginCDN

TCP Connection TCP ConnectionTCP Connection(s)

Ingress Node Egress Node

Fig. 1. Multiple segments of connectivity in a CDN environment

Two CDNs can be cascaded together [3], as shown in Fig 3b.

For convenience, we recognize the front-end CDN as FCDN

and the back-end CDN as BCDN. There are at least 3 TCP

connections in Figure 3b, including client-fcdn, fcdn-bcdn and

bcdn-origin.

If a user requests data, the CDN first tries to respond from

the local cache [4]. In the case of a cache miss, it forwards the

request to the origin server to obtain the target resource and

caches the response for subsequent requests. This mechanism

can efficiently reduce user access delay and decrease load

pressure on the origin server. Besides, CDNs select edge

nodes dynamically by load balancing, which provides DDoS

protection to the origin server.

However, a user is able to make a cache miss and
force web requests to be forwarded to the origin server.

Previous studies [5], [6] show that dynamic resource requests

will be always forwarded to the origin server, and appending

a random query string into the target URL can also bypass

the CDN’s caching mechanism. Moreover, most CDNs (e.g.,
Azure, Cloudflare, etc) provide configurable options to cus-

tomize caching policy [3], which makes a malicious customer

able to disable resource caching.

B. HTTP Range Request Mechanism

Because of canceled requests or dropped TCP connections,

HTTP clients often encounter interrupted data transfers. How-

ever, HTTP is a stateless application protocol. When request-

ing large media or downloading files, interrupted transfers

require the client to re-transfer the entire resource. This brings

inefficient network transmissions and bad user experiences.

Therefore, the protocol specifications [2], [7], [8] introduce

the HTTP range request mechanism to improve the trans-

mission efficiency of web resources. Range requests allow

clients to efficiently recover from partially failed transfers and

retrieve partial content of large resources, effectively reducing

unnecessary data transmission. This mechanism is especially

useful to perform multi-thread transfers and resuming from

break-point when downloading large files.

Although the range request mechanism is an optional fea-

ture of HTTP, the specifications suggest that origin servers

and intermediate caches ought to support it when possible.

If a server supports byte-range requests, it will insert an

Accept-Ranges header in the response and set the field

value to “bytes”, otherwise, it will set the field value to “none”

or not insert such a response header.

A range request uses a Range header to specify one or

more sub-ranges of the target resource, as shown in Figure 2a

and Figure 2b. According to the specifications, the valid

15

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

GET /1KB.jpg HTTP/1.1
Host: example.com
Range: bytes=0-0

 1
 2
 3
 4
 5

GET /1KB.jpg HTTP/1.1
Host: example.com
Range: bytes=1-1,-2

 1
 2
 3
 4
 5

HTTP/1.1 206 OK
Content-Length: 1
Accept-Ranges: bytes
Content-Type: image/jpeg
Content-Range: bytes 0-0/1000

\xff

 1
 2
 3
 4
 5
 6
 7

HTTP/1.1 206 OK
Content-Length: 208
Accept-Ranges: bytes
Content-Type: multipart/byteranges;
boundary=THIS_STRING_SEPARATES

--THIS_STRING_SEPARATES
Content-Type: image/jpeg
Content-Range: bytes 1-1/1000

\xff
--THIS_STRING_SEPARATES
Content-Type: image/jpeg
Content-Range: bytes 998-999/1000

f\x00
--THIS_STRING_SEPARATES--

 1
 2
 3
 4

 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

(a) range request with a single byte range

(b) range request with multiple byte ranges

(c) 206 response to the request in (a)
(d) multipart response to the request in (b)

Fig. 2. Examples of range requests and partial responses

format of a Range header is “Range: bytes=first byte pos-

[last byte pos]” or “Range: bytes=-suffix length”.

A website server can behave differently when receiving

a range request: 1) If the server does not support range

requests, it ignores the Range header and returns an HTTP

200 response when the request has no errors. Otherwise, 2) if

the specified range is valid, it returns an HTTP 206 response;

3) if the Range header is invalid or the specified range is out

of bounds, it returns an HTTP 416 response.

Based on the specified valid range, the server generates

a single-part or multi-part 206 response. A single-part 206

response contains a Content-Range header to indicate

where the transmitted partial content is located in the target

resource, as shown in Figure 2c. A multi-part 206 response

must contain a Content-Type header whose field value

is “multipart/byteranges”, indicating that it will be sent as

a multi-part message. But it must not directly contain a

Content-Range header, which will be sent in each part

instead, as shown in Figure 2d.

III. RANGE-SPECIFIC IMPLEMENTATIONS IN CDNS

In this section, we first present why we specifically explore

these 13 CDN providers. Then, we analyze and clarify their

range request handling behaviors which lead to the RangeAmp

attacks.

A. Consideration in Selecting CDN Vendors

We test 13 popular CDNs around the world, including

Akamai, Alibaba Cloud, Azure, CDN77, CDNsun, Cloudflare,

CloudFront, Fastly, G-Core Labs, Huawei Cloud, KeyCDN,

StackPath, and Tencent Cloud. These CDNs are often studied

in previous related works [3], [9], [10], and most of them rank

high in the market share [11]. Moreover, most of these CDNs

provide free or free-trial accounts, which indicates little cost

to launch an attack.

Akamai only provides services for enterprise customers, but

we manage to configure an Akamai service on the Microsoft

Azure platform and have a free trial for one month. We

check all ingress and egress IPs in corresponding Akamai

experiments and confirmed that these IPs indeed belong to

Akamai. Tencent Cloud only provides paid services, but it

gives away 50GB of free traffic every month within half a

year. Neither Huawei Cloud nor Alibaba Cloud provides free

services, and we have spent less than $10 in our experiments.

In all subsequent experiments, we deploy our origin server

individually behind these CDNs and apply their default con-

figuration.

B. Differences in CDNs Handling Range Requests

According to HTTP specifications [2], [7], [8], HTTP imple-

mentations ought to support range requests when possible. To

find out which CDNs support range requests, we invalidate

it on our origin server and send a valid range request to

each CDN. The result is that our origin server always returns

a 200 response with no Accept-Range header, but all

CDNs return a 206 response with an Accept-Range header

whose field value is “bytes”. Therefore, we conclude that these

13 CDNs all support range requests, indeed following the

suggestion of the specifications.

However, it is not clearly defined in the specifications how

CDNs should forward a range request. We find that CDNs

have different policies to handle the Range header before

forwarding a valid range request, including:

• Laziness – Forward the Range header without change.

• Deletion – Remove the Range header directly.

• Expansion – Extend it to a larger scale of byte range.

When receiving a range request, most CDNs prefer to
adopt the Deletion policy or the Expansion policy (see

Section V-A) because they believe that the client may continue

requesting other byte ranges of the same resource. In this

case, the CDN removes the Range header or extends it to

a larger byte range when forwarding a range request, and then

caches the responses for subsequent range requests. This does

optimize caching, reduce access latency, and prevent excessive

back-to-origin requests.

The range request mechanism also allows the client to

request multiple sub-ranges of the target resource, as de-

scribed in Section II-B. However, RFC2616 [7] places no

restrictions on such multi-range requests. The “Apache Killer”

[12], known as CVE-2011-3192 [13], can exhaust memory on

the Apache server by creating a number of threads that use

a Range header with multiple ranges. Therefore, RFC7233

[2] adds some security considerations to multi-range requests,

suggesting that an HTTP server ought to ignore, coalesce,
or reject range requests with more than two overlapping
ranges or many small ranges in the Range header. We find

that most CDNs indeed adopt the suggestion of RFC7233 but
unfortunately, some CDNs ignore it (see Section V-A).

IV. RANGE-BASED HTTP AMPLIFICATION ATTACKS

The Deletion and Expansion policy are beneficial for CDNs

to improve service performance. But we notice that these

policies will require CDNs to retrieve many more bytes from

the origin server than the ones requested by the client. Also, if

a CDN returns a multi-part response to a multi-range request

without checking if ranges overlap, the response sent by the

16

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

CDN can be thousands of times larger than the one from the

origin server. These cases will cause serious traffic differences

between different connections in the network path from the

client to the origin server.

A. Threat Model

The significant traffic differences caused by range-specific

policies will bring a novel class of traffic amplification attacks,

denoted “Range-based Amplification (RangeAmp) Attacks”.

We identified two scenarios of the RangeAmp attacks and

respectively present them in Section IV-B and Section IV-C.

Attacker Origin

Origin

Att k

FCDN BCDN

CDN

little traffic

little traffic large traffic

little trafficlarge traffic

Sending range requests

(a)

(b)

Fig. 3. General construction of the RangeAmp Attacks

In a RangeAmp attack, the attacker is able to craft malicious

but legal range requests to the CDN, as shown in Fig 3. One

of the victims is the origin server in Fig 3a, which is being

normally hosted on the CDN by the owner, or maliciously

deployed on the CDN by the attacker [14]. The other victims

are the FCDN and the BCDN in Fig 3b, which is maliciously

cascaded together by the attacker.

Through an empirical study, we show that the attacker

can perform a traffic amplification attack with little cost and

exhaust the bandwidth of its victims.

B. Small Byte Range(SBR) Attack

If a CDN adopts the Deletion or Expansion policy to
handle range requests, an attacker can craft a Range header

with a small byte range to launch a RangeAmp attack. We

call it “Small Byte Range(SBR) Attack”. In an SBR attack,

the cdn-origin connection will transport a much larger traffic

than the client-cdn connection, which makes the attacker able

to attack against the origin server hosted on the CDN.

GET /test.jpg HTTP/1.1
Range: bytes=<small range>

GET /test.jpg HTTP/1.1
Range: bytes=<large range>

206 response
small traffic

206/200 response
large traffic

CDN OriginAttackerAtt k

Fig. 4. Flow and example construction of the SBR Attack

As shown in Fig 4, the attacker crafts a range request with

a small byte range like “Range: bytes=0-0”, and sends it to a

vulnerable CDN. As described at the end of Section II-A, an

attacker can easily make a cache miss. Therefore, the CDN

will remove the Range header or extend it to a larger byte

range, and then forward the request to the origin server. This

results in that the origin server returns an entire copy or a large

range of the target resource, but the CDN returns a partial

content with only the specified range, which can even be a

single byte.

In an SBR attack, response traffic in the client-cdn connec-

tion is just hundreds of bytes (little). If the CDN adopts the

Deletion policy, response traffic in the cdn-origin connection

is equivalent to the entire target resource (much greater).

Therefore, the bigger the target resource, the larger the
amplification factor. But if the CDN adopts the Expansion
policy, the amplification factor will only be a fraction of the

one in the previous case.

C. Overlapping Byte Ranges(OBR) Attack

If the FCDN adopts the Laziness policy and the BCDN
returns a multi-part response without checking whether
ranges overlap, an attacker can craft a Range header with

multiple overlapping byte ranges to launch another RangeAmp

attack. We call it “Overlapping Byte Ranges(OBR) Attack”. In

an OBR attack, the fcdn-bcdn connection will transport a much

larger traffic than the bcdn-origin connection, which makes

the attacker able to greatly consume the bandwidth available

between the FCDN and the BCDN. The attacker can send all

multi-range requests to the same ingress node of the FCDN,

and set the FCDN’s origin server to be a specific ingress node

of the BCDN, to perform the OBR attack against these specific

nodes.

range request

n overlapping ranges

206 response

little
 traffic

range request

n overlapping ranges206 response

large traffic

200 response

little
 traffic

(range) request

OriginAttackerAtt k

BCDN

FCDN

Fig. 5. Flow and example construction of the OBR Attack

As shown in Fig 5, the attacker crafts a multi-range request

with n overlapping byte ranges like “Range: bytes=0-,0-,...,0-

” (the number of “0-” is n), and sends it to the FCDN. The

FCDN directly forwards it to the BCDN. After handling the

Range header, the BCDN forwards the request to the origin

server where range requests are disabled by the attacker. The

origin server will return a 200 response with the entire copy

of the target resource, but the BCDN will return a n-part

response, which can be up to n times the size of the entire

target resource.

The OBR attacker can set a small TCP Receive Window to

make himself only receive little data [15], [16]. Besides, some

CDNs will maintain the connection between itself and the

upstream server when the client-cdn connection is abnormally

aborted [5], such as CDNsun and CDN77. Thus, the attacker is

able to consume much smaller resources by actively aborting

the client-cdn connection.

In an OBR attack, when the target resource is fixed, re-

sponse traffic in the bcdn-origin connection is always roughly

17

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

the same. But response traffic in the fcdn-bcdn connection

is nearly proportional to the number of overlapping ranges.

Apparently, the greater the number of overlapping ranges,
the larger the amplification factor. But the number of

overlapping ranges is limited by the maximum length of the

Range header which is generally restricted by the request

header size limit of particular CDN. Therefore, the maximum

length of the Range header finally determines the upper-

bound of the amplification factor.

V. REAL-WORLD EVALUATION

To explore the feasibility and severity of RangeAmp vulner-

abilities in the wild, we conduct a series of experiments. We

examine which CDNs are vulnerable to the RangeAmp attacks,

calculate the actual amplification factors, and analyze the

practical impacts. In all experiments, our origin server is the

same Linux server with 2.4GHz of CPU, 16G of memory and

1000Mbps of bandwidth. And our origin website is powered

by Apache/2.4.18 with the default configuration applied.

A. Feasibility of the RangeAmp Attacks

To analyze whether RangeAmp vulnerabilities exist in prac-

tical environments, we test the actual range-specific policies

of each CDN to figure out which CDNs are vulnerable to the

SBR and/or OBR attack.

In our first experiment, the data-set is a large number of

valid range requests automatically generated based on the

ABNF rules described in the RFCs [2], [7], [8]. We send

these range requests to each CDN and ensure that they will be

forwarded to our origin server. At the same time, we collect

all requests and responses on the client and the origin server.

We compare the request sent by the client with the cor-

responding one received by the origin server to analyze the

range forwarding behaviors of each CDN, and the vulnerable

results of small byte range(s) and multiple overlapping ranges

are summarized respectively in Table I and Table II. We also

compare the payload size of the response sent by the server

and the corresponding one received by the client to discover

the vulnerable replying behaviors of multi-range requests, as

shown in Table III.

Table I shows that a total of 13 CDNs are vulnerable

to the SBR attack. The second column lists the vulnerable

range formats, and the third column presents the CDNs’ actual

policies of handling the corresponding Range headers. The

details are shown below:

1) Akamai, Alibaba Cloud, CDN77, CDNsun, Cloud-
flare, Fastly, G-Core Labs, Huawei Cloud, and Tencent
Cloud adopt the Deletion policy for some formats of the

Range header. Among them, the entries with (*) are con-

ditional. Alibaba Cloud and Tencent Cloud both provide a

Range option to configure whether the back-to-origin request

contains a Range header, and only when this option is set

to disable, the vulnerable range forwarding behaviors shown

in Table I occurs. Huawei Cloud also provides such a Range
option, but it is vulnerable only when this option is set to

enable. Cloudflare allows its users to customize caching rules,

and it is vulnerable only when the target path is configured to

be cacheable.

2) Azure first adopts the Deletion policy to handle a

Range header like “Range: bytes=first-last”. But if the

file size of the target resource is larger than 8MB and

[first,last]⊂[8388608,16777215], Azure will adopt the Ex-
pansion policy to replace the Range header with “Range:

bytes=8388608-16777215” and then forward the new request

to the origin server. In this case, there will be two cdn-origin
connections, and if the HTTP payload transferred in the first

cdn-origin connection is over 8MB, Azure will close this

connection immediately. Considering network latency, actual

response traffic in the first connection will be a little larger

than 8MB. As a result, if the target resource exceeds 16MB,

the response traffic in the two cdn-origin connections will be

both approximately 8MB.

TABLE I
RANGE FORWARDING BEHAVIORS VULNERABLE TO SBR ATTACK

CDN Vulnerable Range Format Forwarded Range Format

Akamai
bytes=first-last

bytes=-suffix

None

None

Alibaba Cloud bytes=-suffix None (*)

Azure
bytes=first-last (F≤8MB)

bytes=8388608-8388608 (F>8MB)

None

None & bytes=8388608-16777215

CDN77 bytes=first-last (first<1024) None

CDNsun bytes=0-last None

Cloudflare
bytes=first-last

bytes=-suffix

None (*)

None (*)

CloudFront
bytes=first-last

bytes=first1 -last1 ,...,firstn -lastn

bytes=first′ -last′
bytes=first′ -last′

Fastly
bytes=first-last

bytes=-suffix

None

None

G-Core Labs
bytes=first-last

bytes=-suffix

None

None

Huawei Cloud
bytes=-suffix (F<10MB)

bytes=first-last (F≥10MB)

None (*)

None & None (*)

KeyCDN bytes=first-last (& bytes=first-last) bytes=first-last (& None)

StackPath
bytes=first-last

bytes=-suffix

bytes=first-last [& None]

bytes=first-last [& None]

Tencent Cloud bytes=first-last None (*)

Note: F is the file size of the target resource.

TABLE II
RANGE FORWARDING BEHAVIORS VULNERABLE TO OBR ATTACK

CDN Vulnerable Range Format Forwarded Range Format

CDN77 bytes=start1 -,start2 -,...,startn - (start1≥1024) Unchanged

CDNsun bytes=start1 -,start2 -,...,startn - (start1≥1) Unchanged

Cloudflare bytes=start1 -,start2 -,...,startn - Unchanged (*)

StackPath bytes=start1 -,start2 -,...,startn - Unchanged [& None]

3) CloudFront completely adopts the Expansion policy to

handle the Range header. For a Range header like “Range:

bytes=first-last”, CloudFront will replace it with “Range:

18

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

TABLE III
RANGE REPLYING BEHAVIORS VULNERABLE TO OBR ATTACK

CDN Vulnerable Ranges Format Response Format

Akamai bytes=start1 -,start2 -,...,startn - n-part response (overlapping)

Azure bytes=start1 -,start2 -,...,startn - (n ≤64) n-part response (overlapping)

StackPath bytes=start1 -,start2 -,...,startn - n-part response (overlapping)

bytes=first′-last′”, where first′ = (first � 20) � 20 and last′

= ((last � 20 + 1) � 20) - 1. For a Range header with

multiple ranges like “Range: bytes=first1-last1,...,firstn-lastn”,

CloudFront will replace it with “Range: bytes=first′-last′” if

last′ - first′ + 1 ≤ 10485760, where first′ = (min(first list)

� 20) � 20, last′ = ((max(last list) � 20 + 1) � 20) - 1,

first list = [first1, ..., firstn] and last list = [last1, ..., lastn].

For example, when receiving a Range header like “Range:

bytes=0-0,9437184-9437184”, CloudFront will change it to

“Range: bytes=0-10485759”. In this case, response traffic in

the client-cdn connection is just hundreds of bytes, but the one

in the cdn-origin connection is over 10MB.

4) KeyCDN adopts the Laziness policy for a Range header

like “Range: bytes=first-last” and does not cache the response

from the origin server. But if KeyCDN receives the same range

request again, it will adopt the Deletion policy to handle the

Range header. Therefore, we can send a range request twice

to abuse KeyCDN to launch an SBR attack.

5) StackPath first adopts the Laziness policy to forward

range requests. If it receives a 206 response from the origin

server, it will continue to remove the Range header and then

forward the new request to the origin server again. Evidently,

StackPath is also vulnerable to the SBR attack.

Table II shows that 4 CDNs can be abused as the FCDN and

are vulnerable to the OBR attack, including CDN7, CDNsun,

Cloudflare and StackPath. The second column lists the vulner-

able range formats, and the third column tells the CDNs’ actual

policies of handling the corresponding Range headers. The

entries with (*) are conditional. As described above, Cloudflare

allows customizing caching rules. But instead, it is vulnerable

only when the target path is configured to be Bypass.

Table III shows that 3 CDNs can be abused as the BCDN

and are vulnerable to the OBR attack, including Akamai,

Azure, and StackPath. The second column lists the vulnerable

multi-range formats, and the third column tells how CDNs

respond to the corresponding multi-range request.

B. The Amplification Factor of the SBR Attack

As shown in Section V-A, there are 13 CDNs vulnerable to

the SBR attack. We further conduct the second experiment in

the wild to explore the amplification factor of this attack.

In our second experiment, the exploited Range header

cases, listed in the second column of Table IV, are generated

based on Table I. They tend to make the client receive as little

traffic as possible and make the server send as much traffic as

possible. As described in Section IV-B, the amplification factor

is almost proportional to the target resource size. Therefore, we

request different target resources ranging from 1MB to 25MB

stepped by 1MB. We capture all response traffic in the cdn-
origin connection and the client-cdn connection and calculate

the amplification factors. The result is shown in Fig 6a-6c.

And the specific amplification factors are listed in column 3-5

of Table IV when the target resource size is 1MB, 10MB, and

25MB.

TABLE IV
THE AMPLIFICATION FACTOR VARIES WITH THE FILE SIZE OF THE TARGET

RESOURCE IN THE SBR ATTACK.

Amplification Factor
CDN Exploited Range Case

1MB 10MB 25MB

Akamai bytes=0-0 1707 16991 43093

Alibaba Cloud bytes=-1 1056 10498 26241

Azure
bytes=0-0 (F≤8MB)

bytes=8388608-8388608 (F>8MB)
1401 15016 23481

CDN77 bytes=0-0 1612 15915 40390

CDNsun bytes=0-0 1578 15705 38730

Cloudflare bytes=0-0 1282 12791 31836

CloudFront bytes=0-0,9437184-9437184 1356 9214 9281

Fastly bytes=0-0 1286 12836 31820

G-Core Labs bytes=0-0 1763 17197 43330

Huawei Cloud
bytes=-1 (F<10MB)

bytes=0-0 (F≥10MB)
1465 14631 36335

KeyCDN bytes=0-0 & bytes=0-0 724 7117 17744

StackPath bytes=0-0 1297 13007 32491

Tencent Cloud bytes=0-0 1308 12997 32438

Note: F is the file size of the target resource.

As illustrated in Fig 6a-6c, response traffic in client-cdn
connection is no more than 1500 bytes, while the amplification

factor is basically proportional to the target resource size for

each CDN. When the target resource size is fixed, the response

traffic from the server to different CDNs is almost the same.

But due to the great difference resulted from different response

headers inserted by CDNs, the slope of the amplification factor

varying with the target resource size is quite different. For

instance, Akamai and G-Core Labs insert fewer headers to

the response, causing their amplification factors to be larger

than other CDNs. There are three exceptions. The first one is

Azure. The response traffic from the server to Azure is up to

about 16MB with the exploited Range case. When the target

resource exceeds 16MB, the amplification factor of Azure

will stay unchanged(Fig 6a). The second one is CloudFront.

Similar to Azure, when the target resource exceeds 10MB, the

amplification factor of CloudFront no longer increases(Fig 6a).

The last one is KeyCDN. We need to send range requests twice

each time to make a traffic amplification. Therefore, KeyCDN

generates the largest response traffic(Fig 6b).

Take CloudFront as an example, when the target resource

is 1MB, the amplification factor is 1356; and when the target

resource exceeds 10MB, the amplification factor is about 9200.

Take Akamai as another example, when the target resource is

19

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

(a) Amplification factors

(b) Response traffic from the CDN to the client

(c) Response traffic from the origin server to the CDN

Fig. 6. Exploring the amplification factor of the SBR attack with different
target resources and different CDNs

1MB, the amplification factor is 1707, and when the target

resource is 25MB, the amplification factor is 43093. The detail

amplification factors of each CDN are listed in Table IV.

C. The Amplification Factor of the OBR Attack

As shown in Table II and Table III, 4 CDNs can be abused

as the FCDN and 3 CDNs can be abused as the BCDN.

Therefore, excluding the case where a CDN is cascaded with

itself, there are 11 combinations of cascaded CDNs potentially

vulnerable to the OBR attack, listed in column 1-2 of Table V.

To find the max amplification factor, we conduct the third

experiment.

In our third experiment, the test cases of multiple byte

ranges, listed in the third column of Table V, are generated

based on Table II and Table III. They tend to make the

BCDN return as much traffic as possible. For convenience, we

recognize the number of overlapping ranges as n. As described

in Section IV-C, the bigger n, the larger the amplification

factor.

While n is limited by the CDN’s constraints on the request

header size. Some CDNs even precisely restrict the number of

ranges in a multi-range request. We tested the default request

header size limits of related CDNs. Akamai limits the total

size of all request headers to 32KB, and StackPath limits it

to about 81KB. Both CDN77 and CDNsun limit the size of a

single request header to 16 KB. And Cloudflare’s constraints

on the Range header can be summarized as RL + 2HHL +

RHL ≤ 32411B, where RL is the size of the request line,

HHL is the size of the Host header, and RHL is the size of

the Range header. Only Azure limits the number of ranges in

the Range header to 64. According to these results, we get

the max n, as shown in the 4th column of Table V.

We use the max n to explore the max amplification factor

of the OBR attack. To minimize or avoid real impacts on

the performance of the corresponding vulnerable CDNs, our

target resource size is limited to be just 1KB. Moreover, we

set up a proxy between the FCDN and the BCDN to collect

traffic transferred between them. To achieve this, we configure

the FCDN’s origin server as our proxy server and set the

proxy server to forward requests to the BCDN. Eventually,

we capture all response traffic transmitted over the bcdn-origin
connection and the fcdn-bcdn connection, and calculated am-

plification factors, listed in column 5-7 of Table V.

As illustrated in Table V, response traffic in the bcdn-origin
connection is no more than 2000 bytes, but the one in the fcdn-
bcdn connection is much larger. For example, when abusing

CDN77 as the FCDN and Azure as the BCDN, the max

amplification factor is about 53. And when abusing Cloudflare

as the FCDN and Akamai as the BCDN, the max amplification

factor is about 7342. The detailed results are given in Table V.

D. Practicability of the RangeAmp Attacks

To avoid affecting the CDN’s normal operation, we conduct

controlled experiments in our study (see Section VI-A). But

a real-world attacker can continuously and concurrently send

a certain number of range requests to perform the RangeAmp

attacks. In an OBR attack, the victims are specific ingress

nodes of the FCDN and the BCDN. Due to an ethical concern,

we can’t launch a real attack to verify whether an ingress node

is affected. But in an SBR attack, the victim is the origin

server, thus we can evaluate the attack’s impact by checking

the outgoing bandwidth of our origin server.

We conduct the fourth experiment to evaluate the SBR

attack’s damage to bandwidth. Take Cloudflare as an example,

we concurrently send m range requests to Cloudflare every

20

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

TABLE V
THE MAX AMPLIFICATION FACTOR OF THE OBR ATTACK

FCDN BCDN Exploited Range Case Max n
Exploiting with 1KB of Target Resource and Max n

Traffic from Server to BCDN Traffic from BCDN to FCDN Amplification Factor

Akamai 5455 1676B 6350944B 3789.35

CDN77 Azure bytes=-1024,0-,...,0- 64 1620B 86745B 53.55

StackPath 5455 1808B 6413097B 3547.07

Akamai 5456 1676B 6337810B 3781.51

CDNsun Azure bytes=1-,0-,...,0- 64 1620B 84481B 52.15

StackPath 5456 1808B 6414011B 3547.57

Akamai 10750 1676B 12456915B 7432.53

Cloudflare Azure bytes=0-,0-,...,0- 64 1620B 85386B 52.71

StackPath 10750 1940B 12636554B 6513.69

Akamai 10801 1676B 12522091B 7471.41

StackPath Azure bytes=0-,0-,...,0- 64 1620B 82191B 50.74

StackPath - - - -

Note: n is the number of overlapping ranges in the exploited multi-range request.

(a) Incoming bandwidth consumption of the client (b) Outgoing bandwidth consumption of the origin server

Fig. 7. The bandwidth consumption of the client and the origin server with different number of attack requests

second, lasting 30 seconds. The target resource size is 10MB

and the outgoing bandwidth of the origin server is 1000Mbps.

During the experiment, we monitor the outgoing bandwidth

of the origin server and the incoming bandwidth of the client.

We iterate m from 1 to 15 to plot the trend of bandwidth

consumption against time in Fig 7a and Fig 7b.

As illustrated in Fig 7a-7b, no matter how large m is, the

incoming bandwidth consumption of the client is less than

500Kbps, but the outgoing bandwidth consumption of the

origin server is much larger. When m ≤ 10, it is less than

1000Mbps but almost proportional to m. When m ≥ 11, it

is close to 1000Mbps. Exactly, when m ≥ 14, the outgoing

bandwidth of the origin server is exhausted completely.

We perform the above experiment on all 13 CDNs. As

expected, the experimental results are similar. Some CDNs,

including Cloudflare and CloudFront, claim to have some

defenses against DDoS attacks. However, during our exper-

iments, vulnerable CDNs raised no alert while using their

default configuration for the potential defenses.

E. Severity Assessment

A serious and common practical impact. According to

our experiment results, the amplification factor of an SBR

attack is almost proportional to the target resource size, and

the one of an OBR attack is almost proportional to the

number of overlapping byte ranges. All 13 CDNs we tested are

vulnerable to the SBR attack, and 11 combinations of cascaded

CDNs are vulnerable to the OBR attack. As we described in

Section III-A, these CDNs are popular around the world and

rank high in the market share. Thus, there are lots of websites

and CDN nodes exposed to our RangeAmp vulnerability.

A low-cost and efficient DDoS attack. Unlike other DDoS

attacks that need to control a large scale of botnets, the attacker

only needs an ordinary laptop to launch the RangeAmp

21

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

attacks. The ingress nodes of CDNs are scattered around the

world, coming into a natural distributed ‘botnet’. This makes

a RangeAmp attacker able to easily congest the target network

and even create a denial of service in seconds, while the

attacker pays a small cost.
A great monetary loss to the victims. Most CDNs charge

their website customers by traffic consumption, including Aka-

mai, Alibaba Cloud, Azure, CDN77, CDNsun, CloudFront,

Fastly, Huawei Cloud, KeyCDN, Tencent Cloud [17]–[21].

When a website is hosted on a vulnerable CDN, its opponent

can abuse the CDN to perform a RangeAmp attack against it,

causing a very high CDN service fee to the website.
A security challenge to anti-DDoS. Traditional DDoS

attacks that consume bandwidth mainly target the victim’s

incoming bandwidth. Instead, The RangeAmp attacks mainly

consume the victim’s outgoing bandwidth. This will pose a

security challenge to the detection of DDoS attacks. As shown

in Section V-D, when we abuse a CDN to perform an SBR

attack, the vulnerable CDN raises no alert under its default

configuration.

VI. DISCUSSION

In this section, we will further discuss the ethics of our

experiments, the root cause of RangeAmp vulnerabilities, and

the mitigation solutions.

A. Ethic Consideration
When conducting real-world experiments to validating and

evaluating the RangeAmp attacks, our primary concern is

that when our experiments consume too much bandwidth,

it may degrade the CDN’s network performance and cause

collateral damage to other CDN-hosted websites. Thus, we

have considered this ethical concern from the beginning.
First, we conduct controlled experiments to limit bandwidth

consumption in both time and volume dimensions. In the 1st

and 2nd experiments, we only send one range request to the

CDN each time, which hardly affects the CDN’s performance.

In the 3rd experiment, our target resource size is just 1KB,

which will not generate excessive traffic in the fcdn-bcdn
connection after being enlarged. In the 4th experiment, we

send all requests to completely different ingress nodes of the

CDN to minimize or avoid real impacts on the performance

of specific nodes. And we sustain our experiment for only 30

seconds each time to keep the bandwidth consumption as little

as possible.
Second, in our responsible disclosure, we unveiled our

experiment details and vulnerability reproduction to the cor-

responding CDNs. They responded positively and are in the

progress of reviewing and fixing the threats. Besides, we also

contacted the editors of RFC7233, and they advised us to

discuss the RangeAmp threats in the mail list of the HTTP

working group. We hope that our work contributes to the

security improvement of HTTP.
In summary, we make our best effort to achieve a balance

between the real-world severity evaluation and the risk of

impacting CDNs. And we believe our work’s beneficence

outweighs the damage we cause.

B. Root Cause Analysis

The range request mechanism is defined in RFC2616 [7].

This specification states that “HTTP/1.1 origin servers and

intermediate caches ought to support byte ranges when pos-

sible”. It explicitly specifies that if a proxy supporting range

requests receives a range request, forwards the request to an

inbound server, and receives an entire entity, it should only

return the requested range to its client. And this is the only

description related to a CDN environment.

RFC2616 is updated and published as several new RFCs

(RFC7230-7239) in 2014, and the range request mechanism

is specifically defined in RFC7233 [2]. Involving a CDN

environment, RFC7233 only states that “origin servers and

intermediate caches ought to support byte ranges when possi-

ble”. Besides, RFC7233 adds some security considerations for

multi-range requests, suggesting the server to ignore, coalesce

or reject range requests with more than two overlapping ranges

or many small ranges in the Range header.

However, there are no additional illustrations on range

requests in the newest HTTP/2 protocol [8], which just cites

the definition in HTTP/1.1, “the specification and require-

ments of HTTP/1.1 Range Requests [RFC7233] are applicable

to HTTP/2”. And we find that the RangeAmp threats in

HTTP/1.1 are also applicable to HTTP/2.

As described above, RFC2616 has no security considera-

tions for the range request mechanism. It has no restrictions

on multi-range requests and even explicitly allows inconsistent

response sizes between the front-end and the back-end connec-

tions of a proxy. RFC7233 realizes that the range-introduced

efficiency could also bring DoS attacks against the server and

gives some suggestions on multi-range requests. However, it

does not clearly define how CDNs should handle a Range
header. Even worse, RFC7540 fully refers to the definition of

range requests in HTTP/1.1, without any other illustration. As

a result, each CDN has its own implementation on how to

handle range requests, leading to the SBR attack. Moreover,

RFC7233 has already warned about the threat caused by

overlapping byte ranges but some CDNs ignore it, causing

the OBR attack.

Root cause: In summary, we think that the unclear defi-

nition and security negligence of the specifications constitute

the root cause of RangeAmp vulnerabilities, and the imple-

mentation flaws of CDNs greatly worsen it.

C. Mitigation

Server side: Enforce local DoS defense. After deploying a

CDN, customer websites are under the well-advertised DDoS

protections of the CDN. However, our RangeAmp attacks can

nullify this kind of protection. When suffering a RangeAmp

attack, the origin server can deploy a local DoS defense

(e.g. filtering requests, limiting bandwidth, etc) for temporary

mitigation. But this does not necessarily work. From the

perspective of the origin server, attack requests are no different

from benign requests and come from widely distributed CDN

nodes. It is difficult for the origin server to defend against it

effectively without affecting normal services.

22

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

CDN side: Modify the specific implementation on range
requests. CDNs can detect and intercept malicious range

requests based on the characteristics of the RangeAmp attacks.

But the essential approach is to improve the policy of handling

the Range header. As described in Section IV-B, the Dele-
tion policy and the Expansion policy cause the SBR attack.

Therefore, CDNs can adopt the Laziness policy to completely

defend against the SBR attack. But this also makes CDNs

unable to benefit from range requests. A better way is to adopt

the Expansion policy but not extend the byte range too much.

For example, it is acceptable to increase the byte range by

8KB, which will not cause too much traffic difference between

the CDN’s front-end and back-end connections. In addition,

CDNs should follow the security recommendations on multi-

range requests in RFC7233, such as rejecting range requests

with many small ranges or multiple overlapping ranges in

the Range header. Furthermore, as an important part of the

Internet infrastructure, we believe CDNs should perform a full

security evaluation before supporting new protocol features.

Protocol side: Revise a well-defined and security-aware
RFC. As discussed in Section VI-B, the unclear definitions

and insufficient security considerations of the specifications

essentially cause RangeAmp threats. Thus, we contacted the

editors of RFC7233 and they agreed that this kind of attack

should be mentioned as a security consideration. According

to their suggestions, we will continue to discuss this threat on

the mailing list of the HTTP working group. We think that a

more specific limit of the Range header should be defined in

a future updated RFC, especially for the HTTP middle-boxes

like CDNs.

VII. RESPONSIBLE DISCLOSURE

A. Response from CDN vendors

All vulnerabilities found in our study have been reported to

related CDN vendors. We actively contacted vendors one by

one more than one month before the paper was submitted. We

provided them mitigation solutions to eliminate the detected

threats. Most vendors quickly confirmed the vulnerabilities and

claimed to fix them as soon as possible. Some vendors have

indeed fixed the vulnerabilities, including CDN77, Huawei

Cloud, G-Core Labs, and Tencent Cloud. Unfortunately, al-

though we disclosed RangeAmp issues to StackPath in several

ways, including the StackPath Support platform, email, and

customer services, we did not receive any feedback. (Six

months later, StackPath contacted us and explained that they

had responded quickly to our reported RangeAmp attacks, but

their mail system failed to send their feedback to us. They

claimed to deploy a fix across all StackPath edge locations to

mitigate the OBR attack. And they will continue to monitor

and evaluate RangeAmp attacks.)

In general, we have tried our best to responsibly report the

vulnerabilities and provide mitigation solutions. The related

vendors will have about seven months to implement mitigation

techniques before this paper is published. And they have the

duty to inform their customers about the vulnerabilities.

The responses from CDN vendors are summarized below:

Cloudflare appreciated our work and discussed the vulner-

abilities with us in detail. They thought that the SBR attack

relies on constantly triggering a cache-miss and a customer

can add a page rule to ignore query strings. But this does

not solve the problem fundamentally. The malicious customers

and some normal customers will not follow this suggestion.

Unfortunately, they won’t implement our mitigation solutions

because Cloudflare does not want to cache partial re-
sponses of certain resources. And they insisted that they are

not deviating away from the specifications. But Cloudflare now

seems to have improved its DDoS detection mechanism.

Huawei Cloud evaluated the issue as a high-risk vulnerabil-

ity. They viewed it as indeed a problem for the CDN industry

and contacted us actively to discuss how to defend against it.

And they have now fixed the related vulnerabilities.

CDN77 thanked us for our research. To defend against the

OBR attack, they have created a detection for overlapping

ranges and such requests will be denied. Besides, they are

now moving to disable the Range header to mitigate the SBR

attack and try implementing slicing of range requests.

G-Core Labs determined that the vulnerabilities exist on

their service and contacted us actively to discuss mitigation

options. To defend against the SBR attack, they eventually

chose to make the “slice” option enabled by default, which

adopts the Laziness policy to handle the Range header.

Tencent Cloud confirmed that their implementation is

vulnerable to the SBR attack. And they have fixed it now.

Akamai acknowledged that the Azure case of Akamai is

indeed problematic. They said that the Azure configurations

may override the origin configurations of Akamai and this

issue should be fixed on the Azure side. Anyway, they claimed

to look into this problem promptly.

CloudFront admitted the methods used to optimize caching

of range requests indeed increase bytes requested from the

origin. They claimed to investigate how to prevent multi-range

requests from increasing any more traffic than single-range

requests. Besides, they claimed that they have safeguards to

prevent excessive back-to-origin requests.

CDNsun claimed that they would mitigate the OBR attack

by limiting the number of ranges or rejecting overlapping

range requests. But they insisted that they don’t have a proper

technical solution to the SBR attack, although we introduced

some mitigation options to them.

Fastly expressed appreciation for our study and informed

us that they are investigating to validate the attack scenarios,

explore the effectiveness of mitigation already available, and

develop new capabilities to manage the risk of this attack.

Azure confirmed that the attack is feasible, but only in cer-

tain circumstances. They insisted that if a customer configures

the options to ignore query strings then the attack will be

mitigated. But as we discussed with Cloudflare, a malicious

customer won’t follow the security best practices. And some

normal customers won’t do so as well.

Alibaba Cloud confirmed that their implementation is

vulnerable to the SBR attack. They are currently fixing it.

23

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

KeyCDN thanked us for our report but claimed that they

have already been aware of this issue.

B. Response from the RFC editor

We also contacted the honored editors of RFC7233 with

email and Roy T. Fielding replied that “it’s the CDN’s re-

sponsibility to manage its back-end behavior regardless of the

protocols used to access it”. But he also said that “I agree

that this kind of attack should be mentioned as a security

consideration” and “we can warn about certain effects and

kinds of attack”. He suggested we discuss this threat on the

mailing list of the HTTP working group.

VIII. RELATED WORK

HTTP Range Security. To the best of our knowledge,

there is no academic literature discussing the security risks

introduced by range requests in a CDN environment. Accord-

ing to the CVE platform, there are about 20 vulnerabilities

related to range requests. All of them are related to improper

implementations but have nothing to do with CDNs. For

instance, CVE-2017-7529 [22] presents an integer overflow

caused by Nginx’s incorrect processing with the Range field.

And CVE-2011-3192 [13] presents a DoS attack using a

Range header with multiple ranges to exhaust memory on

the Apache server. Our RangeAmp attacks mainly exploit the

asymmetrical traffic consumption in the front-end and back-

end connections of a CDN, which is quite different from these

vulnerabilities.

CDN Security. As an important part of the Internet in-

frastructure, CDN security has been well researched. Due to

the DDoS protection provided by CDNs, attackers are highly

interested in finding out the origin IP of the target website.

There are some methods based on information leaks to expose

the sensitive information of the origin server [6], [9]. In

comparison, our RangeAmp attacks can directly nullify the

DDoS protection of a vulnerable CDN and abusing the CDN

to attack the origin server. Triukose et al [5] proposed an attack

of exhausting the bandwidth of the origin server by rapidly

dropping the front-end connections. We evaluated this attack

and found that most CDNs can mitigate it. They will break

the corresponding back-end connections when the front-end

connections are abnormally cut off. However, this defense is

invalid under our RangeAmp attacks. Furthermore, CDNs can

also become the victim, and in the forwarding-loop attacks

proposed by Chen et al [3], an attacker can chain CDN nodes

into a loop, causing the malicious request to be processed

repeatedly and reducing CDN’s availability. Differently, our

RangeAmp attacks present a novel method to perform an

amplification attack against specific ingress nodes of CDNs.

Some studies show that the global distribution and massive

nodes of a CDN also facilitate malicious CDN customers

to abuse the CDN [23]–[25]. And CDN’s mappings between

clients and surrogates can also be maneuvered with crafted

DNS records [26]. Compared to previous researches related

to CDNs, we propose a novel class of amplification attacks

and conduct a real-world security evaluation with 13 popular

CDNs. Indeed, we provide a complement to existing CDN

security research.

Amplification Attacks. Amplification attacks have also

long been well studied. Booth et al [27] reveal that, by

recruiting UDP servers on the Internet as the reflectors, a

UDP amplification attack can reach an amplification factor

of 556. Sieklik et al [28] further analyze the DNSSEC based

amplification attack, which leads to an amplification factor

of 44. Besides the UDP protocol, the TCP protocol can

also be abused. Anagnostopoulos et al [29] study the TFTP

amplification attack with an amplification factor of 60. Kührer

et al [30] gave an in-depth analysis of the TCP reflection attack

across famous TCP services, eg, HTTP, MySQL, and POP3

services. Further, Kührer et al [31] also reveals that the NTP

service can lead to an amplification factor of 4670. In 2015,

Krämer et al [32] designed a novel honeypot to track and

analyze these types of amplification attacks. Compared with

these previous amplification attack studies, our RangeAmp

attack can reach a much larger amplification factor. More

importantly, when the target website is hosted behind a CDN,

the CDN can defend against all amplification attacks of

previous studies. However, a RangeAmp attacker can nullify

the DDoS protection provided by CDNs and achieve severe

amplification damage against the CDN-hided website server.

In brief, our study reveals that the Range header can be ex-

ploited to perform a novel class of amplification attacks against

the websites hosted on CDNs and the ingress nodes of CDNs.

This attack nullifies the CDN-provided DDoS protections and

poses a severe threat to the Internet security ecosystem.

IX. CONCLUSION

We have presented the principles of the RangeAmp vulner-

ability, along with a comprehensive study of its practicality

in the wild. We find that the 13 popular CDNs tested are all

vulnerable. The unclear definition and security negligence of

the specifications are the root cause, and the implementation

flaws of CDNs further worsen this vulnerability. We believe

that the RangeAmp attacks will pose severe threats to the

serviceability of CDNs and the availability of websites. We

hope that our study will provide insight into this vulnerability

and help the potentially relevant victims to fully understand

them. In the short term, we suggest that the CDNs and websites

adopt one or more of the mitigation solutions discussed in our

paper. In the longer term, we think that a more specific limit

of range requests should be defined in a future updated RFC,

especially for the HTTP middle-boxes like CDNs.

ACKNOWLEDGEMENT

Special thanks are expressed to our shepherd Marc Dacier

and the anonymous reviewers for their insightful comments,

which contributed to a great improvement of our paper. We

also thank the RFC7233’s editor Roy T. Fielding and all related

CDN vendors for their valuable feedback. Last but not least,

we gratefully acknowledge the help of our friend Wenchang

Ma, who spent lots of time correcting our grammar mistakes.

24

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Data Economy, “Data economy frontline. how close you
need to be to edge data?” https://data-economy.com/
data-economy-frontline-how-close-you-need-to-be-to-edge-data/,
[Accessed Dec. 2019].

[2] R. T. Fielding, Y. Lafon, and J. F. Reschke, “Hypertext transfer protocol
(HTTP/1.1): range requests,” RFC, vol. 7233, pp. 1–25, 2014.

[3] J. Chen, X. Zheng, H. Duan, J. Liang, J. Jiang, K. Li, T. Wan, and
V. Paxson, “Forwarding-loop attacks in content delivery networks,”
in 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016. The Internet Society, 2016.

[4] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson, “Host
of troubles: Multiple host ambiguities in HTTP implementations,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1516–1527.

[5] S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Content delivery net-
works: Protection or threat?” in Computer Security - ESORICS 2009,
14th European Symposium on Research in Computer Security, ser.
Lecture Notes in Computer Science, vol. 5789. Springer, 2009, pp.
371–389.

[6] T. Vissers, T. van Goethem, W. Joosen, and N. Nikiforakis, “Maneu-
vering around clouds: Bypassing cloud-based security providers,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1530–1541.

[7] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J.
Leach, and T. Berners-Lee, “Hypertext transfer protocol - HTTP/1.1,”
RFC, vol. 2616, pp. 1–176, 1999.

[8] M. Belshe, R. Peon, and M. Thomson, “Hypertext transfer protocol
version 2 (HTTP/2),” RFC, vol. 7540, pp. 1–96, 2015.

[9] L. Jin, S. Hao, H. Wang, and C. Cotton, “Your remnant tells se-
cret: Residual resolution in ddos protection services,” in 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works, DSN 2018. IEEE Computer Society, 2018, pp. 362–373.

[10] ——, “Unveil the hidden presence: Characterizing the backend interface
of content delivery networks,” in 27th IEEE International Conference
on Network Protocols, ICNP 2019. IEEE, 2019, pp. 1–11.

[11] Datanyze, “Content delivery networks market share report,” https://www.
datanyze.com/market-share/cdn/, [Accessed Dec. 2019].

[12] Rapid7, “Apache range header dos (apache killer),” https://www.rapid7.
com/db/modules/auxiliary/dos/http/apache range dos, [Accessed Dec.
2019].

[13] cve.mitre.org, “Cve-2011-3192,” https://cve.mitre.org/cgi-bin/cvename.
cgi?name=CVE-2011-3192, [Accessed Oct. 2019].

[14] R. Guo, W. Li, B. Liu, S. Hao, J. Zhang, H. Duan, K. Shen, J. Chen,
and Y. Liu, “Cdn judo: Breaking the cdn dos protection with itself,”
NDSS’20, 2020.

[15] D. Senecal, “Slow dos on the rise,” https://blogs.akamai.com/2013/09/
slow-dos-on-the-rise.html, [Accessed Oct. 2018].

[16] Cloudflare, “Slowloris ddos attack,” https://www.cloudflare.com/
learning/ddos/ddos-low-and-slow-attack, [Accessed Oct. 2018].

[17] CDNPerf, “Cdn calculator - cdncalc - cdnperf,” https://www.cdnperf.
com/tools/cdn-calculator, [Accessed Dec. 2019].

[18] CDNsun, “Best cdn solutions at cheap price — cdn pricing,” https:
//cdnsun.com/pricing, [Accessed Dec. 2019].

[19] Alibaba Cloud, “Cdn (content delivery network) pricing & purchasing
methods - alibaba cloud,” https://www.alibabacloud.com/product/cdn/
pricing?spm=a3c0i.7938564.220486.75.26d62aecnaGFXf, [Accessed
Dec. 2019].

[20] HUAWEI CLOUD, “Price calculator-huawei cloud,” https://intl.
huaweicloud.com/en-us/pricing/index.html?tab=detail#/cdn, [Accessed
Dec. 2019].

[21] Tencent Cloud, “Pricing center - tencent cloud,” https://intl.cloud.
tencent.com/pricing/cdn, [Accessed Dec. 2019].

[22] M. Dounin, “Cve-2017-7529,,” http://mailman.nginx.org/pipermail/
nginx-announce/2017/000200.html, [Accessed Oct. 2019].

[23] J. Holowczak and A. Houmansadr, “Cachebrowser: Bypassing chinese
censorship without proxies using cached content,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 70–83.

[24] H. Zolfaghari and A. Houmansadr, “Practical censorship evasion lever-
aging content delivery networks,” in Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. ACM,
2016, pp. 1715–1726.

[25] R. Guo, J. Chen, B. Liu, J. Zhang, C. Zhang, H. Duan, T. Wan,
J. Jiang, S. Hao, and Y. Jia, “Abusing cdns for fun and profit: Security
issues in cdns’ origin validation,” in 37th IEEE Symposium on Reliable
Distributed Systems, SRDS 2018. IEEE Computer Society, 2018, pp.
1–10.

[26] S. Hao, Y. Zhang, H. Wang, and A. Stavrou, “End-users get maneuvered:
Empirical analysis of redirection hijacking in content delivery networks,”
in 27th USENIX Security Symposium, USENIX Security 2018. USENIX
Association, 2018, pp. 1129–1145.

[27] T. G. Booth and K. Andersson, “Elimination of dos UDP reflection
amplification bandwidth attacks, protecting TCP services,” in Future
Network Systems and Security - First International Conference, ser.
Communications in Computer and Information Science, vol. 523.
Springer, 2015, pp. 1–15.

[28] B. Sieklik, R. Macfarlane, and W. J. Buchanan, “Evaluation of TFTP
ddos amplification attack,” Comput. Secur., vol. 57, pp. 67–92, 2016.

[29] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis,
and S. Gritzalis, “DNS amplification attack revisited,” Comput. Secur.,
vol. 39, pp. 475–485, 2013.

[30] M. Kührer, T. Hupperich, C. Rossow, and T. Holz, “Hell of a handshake:
Abusing TCP for reflective amplification ddos attacks,” in 8th USENIX
Workshop on Offensive Technologies, WOOT ’14. USENIX Association,
2014.

[31] ——, “Exit from hell? reducing the impact of amplification ddos
attacks,” in Proceedings of the 23rd USENIX Security Symposium.
USENIX Association, 2014, pp. 111–125.

[32] L. Krämer, J. Krupp, D. Makita, T. Nishizoe, T. Koide, K. Yoshioka, and
C. Rossow, “Amppot: Monitoring and defending against amplification
ddos attacks,” in Research in Attacks, Intrusions, and Defenses - 18th
International Symposium, RAID 2015, ser. Lecture Notes in Computer
Science, vol. 9404. Springer, 2015, pp. 615–636.

25

Authorized licensed use limited to: Tsinghua University. Downloaded on November 23,2020 at 02:48:43 UTC from IEEE Xplore. Restrictions apply.

